Assembly, subunit composition, and footprint of human DNA repair excision nuclease.
نویسندگان
چکیده
The assembly and composition of human excision nuclease were investigated by electrophoretic mobility shift assay and DNase I footprinting. Individual repair factors or any combination of up to four repair factors failed to form DNA-protein complexes of high specificity and stability. A stable complex of high specificity can be detected only when XPA/RPA, transcription factor IIH, XPC.HHR23B, and XPG and ATP are present in the reaction mixture. The XPF.ERCC1 heterodimer changes the electrophoretic mobility of the DNA-protein complex formed with the other five repair factors, but it does not confer additional specificity. By using proteins with peptide tags or antibodies to the repair factors in electrophoretic mobility shift assays, it was found that XPA, replication protein A, transcription factor IIH, XPG, and XPF.excision repair cross-complementing 1 but not XPC.HHR23B were present in the penultimate and ultimate dual incision complexes. Thus, it appears that XPC.HHR23B is a molecular matchmaker that participates in the assembly of the excision nuclease but is not present in the ultimate dual incision complex. The excision nuclease makes an assymmetric DNase I footprint of approximately 30 bp around the damage and increases the DNase I sensitivity of the DNA on both sides of the footprint.
منابع مشابه
Interaction of the human cytomegalovirus uracil DNA glycosylase UL114 with the viral DNA polymerase catalytic subunit UL54
Interaction between human cytomegalovirus uracil DNA glycosylase (UL114) and the viral DNA polymerase accessory subunit (UL44) has been reported; however, no such association was found in proteomic studies of UL44-interacting proteins. Utilizing virus expressing FLAG-tagged UL114, nuclease-resistant association of UL44 and the DNA polymerase catalytic subunit UL54 with UL114 was observed by co-...
متن کاملRepair of DNA-polypeptide crosslinks by human excision nuclease.
DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this ...
متن کاملDNA damage in the nucleosome core is refractory to repair by human excision nuclease.
To investigate the effect of nucleosomes on nucleotide excision repair in humans, we prepared a mononucleosome containing a (6-4) photoproduct in the nucleosome core and examined its repair with the reconstituted human excision nuclease system and with cell extracts. Nucleosomal DNA is repaired at a rate of about 10% of that for naked DNA in both systems. These results are in agreement with in ...
متن کاملIncision of DNA-protein crosslinks by UvrABC nuclease suggests a potential repair pathway involving nucleotide excision repair.
DNA-protein crosslinks (DPCs) arise in biological systems as a result of exposure to a variety of chemical and physical agents, many of which are known or suspected carcinogens. The biochemical pathways for the recognition and repair of these lesions are not well understood in part because of methodological difficulties in creating site-specific DPCs. Here, a strategy for obtaining site-specifi...
متن کاملHuman Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway.
The efficient assembly of newly replicated and repaired DNA into chromatin is essential for proper genome function. Based on genetic studies in Saccharomyces cerevisiae, the histone chaperone anti-silencing function 1 (Asf1) has been implicated in the DNA repair response. Here, the human homologs are shown to function synergistically with human CAF-1 to assemble nucleosomes during nucleotide ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 12 شماره
صفحات -
تاریخ انتشار 1998